
UDC 62-50 

$TOCHASTfC CCX’JTRQL IN A DIFFEmTIAL GAME 

BMM Vol. 42, No. 4, 1978, pp. 579-592 
L, T, BUSLAEVA 

(Sverdlovsk) 
(Received November 28, 1977) 

A stochastic differential game with a fixed termination time is considered 

within the framework of the formalization in [l]. The existence of saddle 
points of the stochastic differential game in classes of position strategies is 

proved. The convergence of the stochastic differential game’s value to that 
of an ordinary position differential game as the noise intensity decreases to 

zero is established. The possibility of using a stochastic process as guide in 
the control procedures is shown for a position differential game. This paper 
follows [2,3]. 

1. Let the motion of a conflict-controlled system be described by the stochastic 
differential equation 

dx M = f (4 2, 24, v)dt + xd.2 M, x Lt,J = 20 
(1.1) 

UEPCRP, VEQCR~, f:[to, sl x Rn x P x Q+R" 

Here x is the phase vector from R “, u and v are the controls, and P and Q 
are closed bounded sets, Function f is continuous, uniformly bounded and satisfies a 
uniform Lipschitz conditions in r from R”,i. e., 

11 f (t, x(l), u, v) - f (t, r(2), u, v) 11 < h[l x(l) - x(2) 11 

V(t, z@), u, v) E ito, 61 x R” x P x Q (i = 1, 2) 

The symbol II E 11 denotes the Euclidean norm of vector E, 6 is some finite time 
instant, z Ii?] is a vector-valued Wiener process whose components z({) It1 

(i = 1, 2, . . ., n) are independent standard Wiener processes (see [4Jj , 
and Ic is a constant. 

Let a continuous bounded function o : R” --t R be specified, having continuous 

derivatives of up to second order; o& satisfies the Hiilder condition 

11 oh (2”‘) - a;;, (a?)) 11 < K 11 Z(l) - X(2) II*, 0 <Q < 1, K = const 

The mathematical expectation of the random value o (z rs1) serves as the payoff 
in the stochastic differential game. These games of the form (1.1) were examined in 

[2,3,5-81. In the present paper a stochastic differential game is set and investigated 
in accordance with the formalization of players’ strategies, presented in [I]. Three 
basic types of position strategies are examined, corresponding to the three cases of 
availability of information to the players in the differential game. The existence is 
established of saddle points of the stochastic differential game in the class of pure 
position strategies of one player and of counter-strategies of the other, as well as in 
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the class of mixed position strategies of both players. It is shown that in the limit as 
X + 0 the stochastic differential game’s value yields the position differential game’s 

value. A procedure is proposed for solving position game control problems on the 
basis of the solution of an auxiliary stochastic game. 

We define the class of first player’s strategies U . 

lo. Puce position strategies U ace identified with Bocel- measurable 

(see PI) functions U : [to, OT x R” + P. The totality of ficst plapc’s puce 

positiot strategies Is denoted { U}I. 

func&& 
The first player’s mixed position stcate$es U ace identified with the 

U : Ito, 61 x R” + P, where P is the set of probability measures p 

nocmed on compactum P . It is assumed that these functions ace Bocel-weakly- 

measurable. 

3O. 

The totality of first player’s mixed position strategies is denoted {U},. 

The first player’s counter-strategies ace identified with Bocel-measurable 

functions U : [to, 61xR” x Q+ P. The totality of them is denonted {U},. 

The second player’s strategy classes{V)l, { V}%,and {v}, ace defined 

analogously with the letters U, p, and P replaced by V, v , and Q and with the 

indices 1,2 and 3 permuted to 3, 2 and 1. We examine the following three sets of 

strategy pairs: 

U% x VII9 P% x VI%, CVs x VI* 

For any stcatqgy pair (U, V) E {U}, X {Vjk(k = 1, 2, 3)we can define the 

corresponding weak solution ZIJ@ [t] = Q [t; t,, ~0, U, VI (to < t < a) of Eq. 
(1.1) (see [43), satisfying with probability one the equality 

s xdzo [z] (k = 2) 

(1.2) 
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p r o b 1 e m ‘15. The initial position (to, z,)is specified. 
uk” & t”)k* 

Find the strategy 
ensuring the ~~lrn~t of the equality 

max M [a (cc 16; to, q, Uhe, VI)] = 
V 

P r o b 1 e m 2&_ The initial i)osition (& q)is specified, Find the strategy 

flICe Ez W)W ensuring the fulfilment of the equality 

s$n M [a(x [S; to, $0, u, Tq)l = 

myx “;“n kf I@ (2 I@; &I, x0, fJ, Q)l 

(0, q E p-1,. x mr @ = f? 2, 31 

2. Let us consider a partial differential guard with bounda~ c~dition 

&- +x2Q+-.&(t,~, Vy)=O (b&2,3) c&u 

pS ft, x, s) = 2; m+oa; s’f (8, x, a, ~1, s E R” 

Here Vr is the gradient of fin&on y with respect to variable%; si(i = 1, 2, . ., n) 
are the components of phase vector x ; the prime denotes transposition, The 
functions Fk (J% = 1,2,3) are conti~uo~ and satisfy a ~~5~~~ condition in Z 
and S and, therefore (see [lOD I a solution of the parabolic Eq. (2.1) 
exists. 

tit us determine the extremal strategies Uke E (U)R (k = 1, 2,s). tit 
Yk : ft,, $1 x R” -F- R be a solution of problem (2. I), We consider functions 
U&e@ = 1, 2, 3) satisfying the conditions 
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(2.3) 

It is important that the functions Uke (k = 1,&s) can be chosen from con~tions 
(2.2)-(2.4) as Borel-measurable one. Anaiog~sly, the ext rcmal strategies Vke E 

{V}, (k = 1,293) are defined as Bore1 functions whose values satisfy the conditions 

vy~~(~, Jj/@, X, G, ULef = ~~V~~‘~~, r)f(t, 5, EL, u) (k = 1) f2.5) 

min 
ss V’ls’ (t, z) f (t, 1’, U, U) @ (&) 9 (dv) --I (2,6) 

EF P & 

FB (G X, vy, (C 2)) (k = 2) 

min Vy,‘(t, x)f (t, I, u, use) = F3 (t, LZ’, Vy, (t, x)) (k = 3) (2.7) 
etEP 

The following statement iS valid, 
T h e o E e m 2.1. The extremal strategies Utre and Vke from (2,2)-f!& ‘7) 

solve Problem ‘i, and Problem 21,, respectively. They form a saddle point of the 

stochastic differential game in the strategy class {U}, x {V},, i. e., 

M la (X I@; t-0, 50, Ukf, VI)1 < Ml0 (x I@; to* 50, Uk<, V,“l)] < 

M io; (tt. N; t,, X0, u, VJ)) (ik = 1, 2, 3) 

(U, V) E {U}k x (V>,, &f Ia (z is; to, x0, Uke, V,“l)l = 
Yk(4B 50) 

Let us present the proof of this statement for k = 1 [Cases k = 2,3 are 

proved similarly), Suppose that the first player had chosen the extremal strategy EJ,e 

defined by condition (2.2) and the second player, an arbitrary counts-Strategy 

v E (% The random process -&ftt &,j!tD, constructed on realizations of the 

random process s,[tl = &,o[t; t,,,, zo, Ule, V], has with probability one the 

stochastic differential (see Elll ). 
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Ume ft] = UIP(f, &d Pi)* Gil PI = If (t, x0 It], 240 It]) (2.9) 

To the right-hand side of (2.8) we add and subtract the term F,(t, Ic,[tl, Vy,(t, 
&I)) dt. We integrate the resulting equation from t, to 6 I next we compute 

the mathematical expectation and, using Fubini’s theorem (see [9]) and the properties 
of a stochastic integral ([4& we obtain 

My, (*, J: [6; to, x0., UIe, Vf) - Y1. (to, x0) = (2.10) 

~(~IVYl’(17 %I ltf)f(tt 40 149 he PI, % ItI) - 

F, (1”, X” ItfI VYI (6 ~~ ~~f))f dt 
Since the integrand in (2.10) is nonpositive when the control u,“[tl is chosen from 

conditions (2.2) and (2.9), we arrive at the inequality 

Now suppose that the first player chooses an arbitrary strategy ci E (C)I and the 

second player chooses the extremal strategy VIP from (2.5). By analogous 

arguments we obtain the inequality 

The assertion of Theorem 2.1 for k = 1 follows from (2.11) and (2,12). 
Theorem 2.1 establishes, in particular, that for a specified initial position 

(to, x0) the stochastic differential game’s value coincides with the value of function 

Yk @L?% %zo) in each of the cases k = 1,2,3, Up to this point the parameter 

X>O of the stochastic differential game has been assumed fixed and, therefore, 
it was omitted in the notation for function ‘& . We now use the notation yk,%, 

reflecting the dependence of function Yk on parameter X, and we consider the 

variation of the stochastic differential game’s value J+ (to, x0) for x-+ 0. 

3. Let the motion of a con~ct-c~trolled system be described by the ordinary 
differential equation 

2‘ = f (E, 5, u, u), x It01 = x0, t, < t < 6 (3.1) 

The game’s outcome is characterized by the value 0 (x Ml). Here f and (T 
are the functions defined in Sect. 1. A formalization of position differential games 
has been constructed in [1] for system (3.1). Within the framework of this formaliza- 
tion it was proved that a differential game defined on any of the three strategy classes 
{u}, X {v},(h = 1, 2, 3) has the value c,(t,, x0). Our purpose here is to 
show that in the limit as x -+ 0 the stochastic differential game’s value Yk,x 

00, xfJ:o> yields the corresponding value ck (to, 20) of the position differential 

game. 
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At first we prove the inequality 

(3.2) 

with k = 1. We define a function V* : [to, fl] x R” x Rn X P -+ Q associating 
apoint u* E Q satisfying the condition 

(x - w)‘f(t,x, u,n*)=max(z-z~w)‘f(t,~, U,U) 
VEQ (3.3) 

with the point ( t, 2, WV n) . We define as well a function u, : [to, 81 X R” X 
R” --t P whose value U, (t, z, w) = u* E P satisfies the condition 

max (Z - 
OEQ 

w)’ f (r, 2, n*, n) = Fr (t, 2, z - w) 
(3.4) 

It can be shown that functions V* and U,can be chose Borel-measurable and we 
subsequently assume them to be Bore1 functions. As before we assume that ur” E 

VJL is the extremal strategy defined by (2.2). Note that this strategy depends 
upon parameter 3c . Finally, let VI0 E {V}, be the second player’s optimal 

counter-strategy in the position game defined in the class {u}i X {.V}l for 
system (3.1). According to [l] the inequality o (Z [6; to, zo, Viol) > c,(t,, so) 
is valid for any motion z [t; to, 50, VI01 of system (3. l), generated by counter- 
strategy VI’. 

In space R” X R” we consider the probabilistic process (z&l,% [t])(ts< 

t<+,o CZQ,) defined as follows, Suppose that a partitioning A of the 

interval [to, 61 by points to = ‘co < z1 < . . . < zN = 6 has been 
selected. We assume that the probabilistic process (2, [t], w. [tl) (to < 
t < Ti, 0 E QCi) has been defined. We select a certain realization (z,[t], 

W*@ = (z,. [tl, n&O. it]) (to < t < zi) of it and we define at first the 

probabilistic process (x0 ftl, w. [tl)(t, < t < ~i+~, o E a,) under the condition 
that the selected realization (z,[tl, w,[t])(to < t < ‘Gi) has been fixed. The right 
endpoint (ST* [‘Gil; W* [Zi]) of this realization is denoted (2*, W,). We consider 

the motion z*ttl(q < t 6 %+d defined by the equality 

x* [tl =x*+ t ft s z, x* [zl, u [zl, v [rl) dr (3.51 

5 

(u[zl= u[‘GJ= u, (Tj, x1, w*), v cd= vh*] = V,“(T~,Z*,d’GJ)) 

The equality Za ItI = X*[tl for ri < t < z~+, is fulfilled with probability one 

in the auxiliary probabilistic process. 
bet the function V** : [to, ft] X R” X P --t v be defined by the equality 

v** 0, w, U) = v*(t, z* It], w, u), where V* is the function chosen from 

condition (3.3). Clearly V** is a ccunter-strategy from class {I%. Therefore. on 
the interval [us, T~+J we can define a weak solution Wg [tl = Wo k +~~Lct,qUlY'**j 

of the stochastic system 

dw ttT = f (t, w, u, v) dt + xdz ItJ, w ltoJ = z. 
(3.6) 
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generated by the pair (UIe, V**) E {U}, X {V},. The equality 

t t 

wll [tl = w* + Sf (r9 @a [a %I [a, % [rl) dz + 1 xdz, [r] 
5 ‘Fi 

u, hl = VI” (7, w, M), u, [‘cl = J-h w, Id, . z&l) = 
v*(zs x*[rJs WI [Al, &I [rI) is fulfilled with 

(3.7) 

probabilitv one for this solution. Thus. we have defined the probabilistic process 
(&I M, WC0 w (to < t < %l, 0 E Q,) 

%I. [tl) (&I 6 t < zi) 

for a fixed realization&,* It], 

of process (& M WU [tl) NJ < t 6 Zi, 0 E Q,,) . 
Using the results [lZ] and taking into account that Ule, v*, u, and “v,’ are Bore1 

functions, we can correctly define the random process (zU [t], ~+,,[tj)(t~ < t< ~~+.a, 
0 E Q,&,). To complete the recurrent definition of the probabilistic process it 
remains to note that on the initial interval [to, r,l the probabilistic process (& ItI, 

W, [tl) is defined by relations (3.5) and (3.7) wherein rr = r,, ana w* = 2* 
ZE z,,. The following statement holds. 

Lemma3.1.Theestimate 

M r/l 5 [6J - w [SJ Ij’J < 11 + (I9 - tJb (x, 6) exp 1% (fi - to)1 (3.8) 

(6 = SUpi(Titl - Zi) (i = 0,1, * a *) N - 1); a (Xv 6) + 0 

for x 3 0, 6 --f 0) 

is valid for the random process (z@ ItI, w, [tJ) (&I < t < 6, w E %) constructed, 

Here his the Lipschitz constant for function f with respect to variable Z. 
To prove the lemma we can first estimate the conditional mathematical 

expectation M[(j z [Tit11 - w [zltl] 11sT for the fixed realization (z, [tl, w* 

[tr>(t, < t < rr). We obtain the estimate 

M [II z [%I1 - W [%I1 II”1 < II %C [+I - 

w, [%I II” (1 + 2A (%I - G)> 4 o (% 6) (%I - ri) 

In the proof of this inequality we use the fact that the functions U, of (3.4) and v* 

of (3.3), which prescribe the choice of control U* in system (3.1) and of control V* 
in system (3.6), are determined from the conditions of mutual tracking of components 

5 [tJ, w [tJ of the random process (a: ItJ, w itJ). Next we derive inequality (3.8) by 
using the formula for conditional mathematical expectations ([4] ), The following 

statement is valid as well. 

L e m m a 3.2. The estimate 

1MC-r (w [*I) < 75,x &I, 4I) (3.8) 

is valid for the random process (G ItI, w, [tl) (to < t < 6, o E ‘a,) . 
In the proof of this inequality (as in the proof of Theorem 2.1) we use the fact 

that control r&l [tl 00 d t < 6) ( see (3.7)) is formed by the strategy U,’ 
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determined by condition (2.2). Since function ~7 satisfies a Lipschitz condition, 

o (&u [@I) < o fwo ISI) -I- L Jf a& [6] - wo NJ 11 

Ma (;t: IN) < Mu (20 Ml) + LM 11 3 [S] - w [Sl I[ 

From (3.8) it follows that N 11 x [@I - zu ISI 11 < &(x, 6), where PO (x, 6) 
40 as x+0 and 6 -+ 0. Therefore, according to (3.9), we have 

Mo (x [@J) < Yl,X (to, %I + LB*&, 6) = Yl, x (&I, ;20) -I- 
@ (x, 8) (fi (x, 6) -+ 0 for x -+ Oands --f 0) (3.10) 

According to the results in [I] the optimal counter-strategy Tfi” ensures the fulfil- 
ment of the inequality 

o (Qi% to, 20, 7.l I * I, V,Ol) > c,(t,, 50) - 83 (6) 
(8 (6) -+ 0 for 6 -+ 0) 

under any choice of measurable realization u ItI e p (to -< t < 6) (here 

25 [t; to, x0, u [ - 1, If,‘] is an Euler polygonal line corr~pond~ng to counter- 
strategy V,“ and to control u I. ],see Cl]). Therefore, for the probabilistic process 

being analyzed, where the control 0 [tl in system (3.1) is formed by the strategy VI* 

we have the valid inequality 

Ma (5 [@I) > CL - 8 (6) 

Hence from (3.10) we obtain 

Yl, it (tot 50) > Cl - p (x, 6) -^ 8 (6) = Cl - a (x, 6) -+ Cl 

as x-to, 640 

We have thus proved inequality (3.2) for k = 1. The inequality 

(3.11) 

withk = 1 can be proved similarly, To do this we should determine Bore1 functions 

U* and V, analogously to the functions introduced in the proof of inequality 

(3.2), replacing 0% * in conditions (3.3) and (3.4). 

To determine the pr~a~~~t~~~ro~~s “,z@ ;“tj, w, ft]) (to < t < 6) we now 

assume that the constant controls u [zif and u [~if in (3.5) are determined by the 

equalities u [ril =ur%i, s*) and v [TJ = V,(ti, x*7 w*, u [zil), where Ur” 
is the optimal strategy in the position game defined in the class {U}, x (V),. for 
system (3.1). In (3.7) we set u. [TI 5 u*(T, &&Zl, W,[Z1), and uw [T] = Vie (T, z&,, 

h] , u,[T]), where TrIe E (V>, is the counter-strategy chosen from condition (2.5). 

Lemma 3.1 remains valid for the probabilistic process defined in this manner, while 
instead of inequality (3.9) the opposite ineq~al~ty fulfilled., Further, the inequality 

iwa (8 [+I) < c, -I- E (6), where e (6) -+ 0 as 6 -+ O~is~~i~ed by the 

choice of strategy Up . ~nequali~ (3.11) with k = 1 follows from these relations. 

From (3.2) and (3. II) we have that the limit of the quantity yl,X (to, q) as x --+ 0 

exists and equals the value C,(&, x0>. 
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Let us describe briefly the construction of the probabilistic process (z&l, w, [t]) 

used in the proof of inequality (3.2) with k = 2. We consider Bore1 functions o.+ and 
P* whose values satisfy, respectively, the conditions 

yz;j a,, - W)‘f(C 5, u, v) P* (du.) v (dv) = Fz (t, z, 5 - w) (3.12) 

;L;jj(“-‘L.)?(t, Gu,V)~(du)v*(du)=F&z,s-w) (3.13) 

(0, (L, 5, w) = p* E p, V*(t,z, w)=v*EQ) 

(U,: [to, 61 xK”xJC-+P, V*: [to, 6]XR”XR”_,Q) 

The motion z*[‘t](~~ < t < ~i+l) of system (3.1) is determined by the equality 

(3.14) 

PT = l-hi = 0, (% x*7 w*), V? = VTi = VsO(Zi, s*) 

where v,’ is the optimal strategy in the position game defined in the class {u}, 

x 1% for system (3.1). Let function Use be determined from condition 

(2.3) and function P** by the equality V**(t, w) = V*(t, 5, w), where 

P* is the function chosen from condition (3.13); then the pair (Ute, v**) E 

VG x P)%. Let us consider the motion of stochastic system (3.6), generated 

by the pair (u,“, v*). The equality 

WOVI = w* + j j pJblTlr u, qp,, r(ds)vw,T(du~dT+~Xdr” [z] (3.15) 

z ri 

P 0, t = uze (r, WOJ [zl), v,, z = V* (.t, xti ITi, W@ [ZJ) 

is fulfilled with probability one for the weak solution WCO [t] = Wo [t; ‘ril W*S 

use, v*1 . From this point on the construction of the probabilistic process 

(2 ;;+ze !‘=‘1(1” < t < 6, 0 fS QIY) is similar to the construction 

. 
In the proof of inequality (3.11) with k = 2 we use Bore1 functions u* and P, 

chosen from conditions analogous to (3.12) and (3.13), as well as the functions Uzo 

and V2’ , where Uzo is the optimal strategy in the position game defined in 

class {U}, x {V}, for system (3.1) and Vse e (V}, is the mixed strategy 

chosen from condition (2.6). 

In the proof of inequality (3.2) with k = 3 we use the functions defined in the 

proof of inequality (3. ll), with the corresponding change of letters U, U, P to 

u, v, Q the replacement of condition (2.5) by (2,4) and of index k = 1 by index 
k. = 3. In the proof of inequality (3.11) with k = 3 we use the functions defined in 
the proof of inequality (3.2), with the same interchange of letters and the replacement 
of condition (2.2) by (2.7) and of index k = 1 by index k = 3. Thus we have the 

following valid statement. 
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T h e o I e m 3.1. The limit of the value Yr,% (to, 50) of the stochastic 
differential game defined in the strategy class {U}, x {V}, exists and equals 
the value ck (ts, za) of the position differential game defined for the same type 
of strategies. 

4. Let us show that the stochastic process (3.6) can be taken as a guide for the 

ordinary controlled system (3.1) when solving position game problems on the minimax 
and maximin of the payoff u (z [s]). The control procedures constructed below 
ensure results arbitrarily close to the best with probability arbitrarily close to one. 

To be specific let us consider the problem facing the first player and construct the 
control procedures ensuring the first player the fulfilment of the inequality 

p [(3. (5 [s]) < ck (t,, 50) + 81 > 1 - e @ = ‘9 27 3, 
(4.1) 

for a preselected e>O. Here, in the cases k = 1,. we examine the situation 
when the first playei%nows the current position (t, 1: [t]), 

information on the motion of controlled system (3.1). 

being his external 

The second player can realize 
counter-strategies V E {V},. In the case of k = 2 the first player’s external 
information also is the knowledge of position (t, 2 It]), while the opponent chooses 
the mixed strategies V & {V}, . In case k = 3 the first player knows the position 
(t, x M) and the opponent’s current control u [tl , while the second 
player can realized a pure strategy V E {V},. In the case k = 1 and k = 3 the 

first player realizes a pure control u [tJ E P and in the case k = 2,. a mixed control 
PtEi”.e 

First player’s control procedure in case k=l. We 

admit the possibility of solving Eq. (2.1) for any x > 0 . The estimates ona (x) 

from Sect, 3, bounding from above the distance between the numbers ck and Yl(,%, 
can be given explicit expression. We assume here that for any x > 0 we know 

the quantity cg (x) for which 

I Cl - Yl,X I<c+); a(x)-+O, x+-o 
(4.2) 

From the specified e > 0 we determine the number Xl> 0 for which the 

inequality a (xi) < l/s 2 is fulfilled. We solve the parabolic Eq. (2. 1) with 

x = x1 and we determine 71,~~ (t,, x0). The value cl of the position 

differential game with payoff d (Z [@I) satisfies the inequality 

yl, x1 (ra, %I) - ‘/se2 < Ci (to, zo) < YI, ~1 (to, 20) + ‘/se’ 
(4.3) 

Let us change function d in the following manner, Let D = {Z : U (z) 

< Yl, x1 + l/&, we set 

CT+ (x) = 
Yl, V, (to, %I) + i/13e2, z E D (4.4) 

(Jl (2) ((J (5) - l/ze < ~1 (z) < o (z)), x EZ D 

where function U1 is chosen so that function (J* belongs to the class indicated in 

Sect. 1 and the condition within parentheses above is fulfilled. We see that with the 
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changed payoff function u* the value (denoted Cl*) of the position differential 
game in the strategy class {U}, X {V}, equals 

Cl 
*= 

%,x1 (~09 %cg) + '18 g8 
(4.5) 

Let I ‘fy, x be a solution of Eq. (2.1) with the boundary condition J’~,x (6, t) =: 

u.*(x). We note that here in the definition of function u* the parameter x1 
is assumed to be fixed, while the choice of parameter X in function yr:% will be 
indicated below. Analogously to (4.2) we have the condition 

I cl* - G I < a (4 

Hence, allowing for equality (4.5) and inequality (4,3), we obtain the estimate 

(4.6) 

Note that the estimate (3.10) holds for the functions o* of (4.4) and ‘Y,“,, being 
examined here. We now choose parameters 6, > 0 and x, > 0 so as to 

fulfil the inequalities 

B (x*, 6,) < l/se2, a (x,1 < l/se2 
(4. ‘7) 

For this choice of functions o* and rr,%, and of parameters 6, and x* 

the proposed first player’s control procedure is the following. Suppose that the first 

player selected a partitioning AI of interval ita, Sl by points to = ‘60(l) < 

71(l) < . . . ( p,.p) = 6, satisfying the condition I$!~ - 2,(l) < 6,. Let As 
be a partitioning of interval [t #] by points t,-, = +s)< ~~(2) (. . . < zN~s) = 6, 
selected by the second player. 

The motions x&](t,, < t < 6) are generated by controls u [t] and 

V tt1 chosen by the first and second players at the instants z,(l) (m = 0,1, . . , 

M - 1) and Tic21 (i = 0, 1, . . . , N - 1) , respectively, on the half- 
intervals [‘6,(l), ‘%I) and [rj(a), $\) by the formulas 

U It] = U [z,(l)? = U*(&(l)* Xb [z,(l)], w, IQ)]) (4.8) 

v [tl = v [Zj(2)] = V (Tj@), ZJqq 24 [tl) (4.9) 
Here the function U, is defined by condition (3.4) and V E {V}, is some counter- 

strategy selected by the second player. 
As in Sect. 3 the probabilistic process (&:o[t], W~[tj) (to < t < e, 

6J = Qd is constructed recurrently, also by first defining certain auxiliary 

processes. We examine a partitioning A of interval [I!,,, 61 by points t, = z0 < 

Tr<... < zn= 6 including the points of partitionings A, and A,. We 

remark that here the partitionings Al and A, do not coincide; therefore, the 

functions (z&l, w&l, u&J, v&J) (to < t < ‘GJ are the redidions of the 
auxiliary probabilistic processes, and not, as in Sect. 3, simply the motions 

(&&I, w&])(tli < i! < Zi). 
We determine motion x*[t] from equality (3.5) in which control U /r] is 

determined by (4.8) for ‘r,(l) < ‘Gi < I$, and control U [T] by (4.9) for 
Zj(‘) < ‘Gi < Zj+lt2). In the auxiliary probabilistjc process the equality xw[ t] = z*[ t] 
is fulfilled with probability one for the motions qc,[tl, wait] for zi < t -< Zt+lr 
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The random motions w&l (zs < C < zi+$n the auxiliary process are determined 
from equality (3.7) in which the parameter x = X, is chosen from condition 
(4.7) and strategy U,e is determined by condition (2.2) in which function yr 
should be replaced by function ‘Yl”,%,. It can be verified that the probabilistic pro- 

cess (x&l, %Jtl)(t, < t Q 6, 0 ESZs) can indeed be defined when the motions 

x bl and w It1 are defined as indicated. Furthermore, the estimates in Sect. 
3 remain valid for this probability process. In particular, the inequality 

(4.10) 

holds. From (4. lo), (4.6) and (4. ‘7) we obtain 

Ma”(x BY) < c&J, X0) i- ‘/& (4.11) 

Since cl ‘(5 Ml) > cl for all 5, from (4.11) follows 

P b”(x NH) < Cl + l/,&l > 1 - f? 

whence, by virtue of (4.4), we have the inequality (4.1) with k = 1. 

First player’s control procedure in case ~,=Z,~nequali~ 
(4.1) with k = 2 can be proved analogously. The relations (4. Q-(4.7) derived for the 

case k = 1 remain valid with index k = 1 replaced by index k = 2. In the construction 

of motion xW ItI (&, < t < 6) we determine the probability measures P&W 
and Y~(~zJ) selected by the first and second players at instants r,,(r) and 
r.!?) 

firmuias 

respectively, on the half-intervals [$A’, T::,) and [T?‘, @.i) by the 

(m=O, I,..., M-1) 

Yt (du) = VT!,) (du) = v ($‘, 20 [zj”‘)) (j = 0, 1, . . .) A’ - 1) (4.13) 
J 

Here function u* is determined by condition (3.2) and 7 E (V}, is a 

mixed strategy chosen by the second player. 
The motion x*[t] (ri < t 4 ‘ri+r) in the auxiliary probabilistic process is 

determined from equality (3.14) in which the function kX (dn) is determined by 

(4.12) for Z!:’ < ri < z%:r and the function Ye (dv) by (4.13) for 2;” < ri 

< rj”:l. The random motions W, [tl (‘C; < t < Ti+r) are determined from 

equality (3.15) in w‘hich the parameter x = x, and the strategy Var is 

determined by condition (2.3) in which function Yz should be replaced by function 

YE%*. The first player’s control procedure in the case k = 3 is shown below. 
We pas on to i&e problem facing the second player and %e construct the control 

procedure efisuring the second player the ful~~ment of the inequality 

P [cf {% [*l) > & - El > f - E (k = 1,2,3) (4.14) 
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for a preselected E > 0 . We change function (J as follows: 

where function 0, is chosen so that function CT** belongs to the class indicated 
in Sect. 1 and the condition within parentheses above is fulfilled. 

Second player’s control procedure in the case k=l. 
Analogously to (4.6) we can obtain the estimate 

where YrX is a solution of Eq. (2.1) with the boundary condition y;,?X (67 s> = 

a**(z). We assume that the second player has selected a partitioning L$ of 
the interval [to, al, 
N- 1, 

satisfying the condition z$ - $” < 6,, j = O,l, . . . , 
and that the first player has selected partitioning A, of interval [to, +f 

by points to = ~~(1) < Ql) < . . . < z& = 6. 

are generated by controls u it] and 
v [tl, 

The motions ;c, [t](t, < t < 6) 
chosen by the first and second players at instants Z,(I) (m = (),I, . , . 

. ._., M - 1) and Tjt2) (i = 0, 1, . . ., N - 1) respectively, on the half- 
intervals [~g), &$,) and [~,!z), T,!“+\) by the formulas 

u ItI = U fz,fl)l = U (&,(l) ,z&) fz,(lJJ) (4.15) 

ZJ [tl = v hjW = v* (TpJ, Lcm [Tj@)], u [tj) 

Function V, is determined by the condition in Sect. 3 and u 6Z {u}, is a 
pure strategy chosen by the first player. 

The motion z*[tT (.ti < 8 < a& in the auxiliary probabilistic process is 
determined by equality (3.5) in which the controls t.8 Id and U [‘Xl are 
chosen in accord with (4.15) for ‘6::) < ‘ri < %%I and ~(3) < T. < r!$. 
The random motions W, [tI(Ti < t < ~i+~) are determided?rorrf equa’hty (3.7) 

in which u. [Al = U*(T, ~t~ [~1, w, 1~1) and v, [zl = Vie (T, uz,, Izl, urn [%I). 
Here function U* has been defined in Sect. 3 and strategy Vrc is chosen from 

condition (2.5) in which function yr should be replaced by function I’?,?,. 
Further, once again it can be verified that the probabilistic process (smfti, w,[tf) 

(to< t<,,s, WE Qly) can indeed be defined when the motions 5 It] and 

w ItI are defined as indicated and the bounds in Sect. 3 remain valid for it. 

In particular, the inequality 

MIS** (x rsr) > yz, (to, 5) - B (x*3 a*> 

holds. Hence, by arguing analogously as in the proof of inequality (4.1). we obtain 
inequality (4.14) with k = 1. 
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Second player’s control procedure in the case k.=a. 
To prove inequality (4.14) the second player’s control procedure is constructed 
analogously to the first player’s control procedure in the proof of inequality (4.1) in 
the case k = 2. 

Second player’s control procedure in the case k=3. 
When constructing the second player’s control procedure we use the functions defined 
in the first player’s control procedure when proving inequality (4.1) for k = 1, with 
the corresponding change of letters U, U, P to U, V, Q, the replacement of 
index k = 1 by index k = 3, of con,Jition (2.2) by (2.7) and of function Ya ** 

by y3,%,. 

First player’s control procedure in the case k = 3. 

To prove inequality (4. l), in the first player’s procedure we use the functions 
determined in the proof of inequality (4.14) for the case .k= 1, with the corresponding 
change of letters u, U, P to v, I’, Q 9 the replacement of index k= 1 by 
index k = 3, of condition (2.5) by (2.4) and of function Y3 bY YL. The 
following statement is valid. 

Theorem4.1. The initial position (to, zo> is specified. For any 

preselected E > 0 we can find x > 0 and 6 > 0 f or which the control procedures 
constructed guarantee the first and second players the fulfilment of the inequalities 

P [a (z MI) < ch_ + &I > 1 - 8, P [(T (z if+]) > ck - 81 > 1 - 8 

respectively, where Ck = Ck(ts, Q) is the value of the position differential game 

defined in the strategy class {u}, X { v}k. 
The author thanks N.N. Krasovskii for the formulation of the problem and for 

valuable advice, and V. D. Batukhtin and A. I. Subbotin for discussions on the paper. 
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